If it's not what You are looking for type in the equation solver your own equation and let us solve it.
-2x^2+10x+300=0
a = -2; b = 10; c = +300;
Δ = b2-4ac
Δ = 102-4·(-2)·300
Δ = 2500
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$\sqrt{\Delta}=\sqrt{2500}=50$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(10)-50}{2*-2}=\frac{-60}{-4} =+15 $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(10)+50}{2*-2}=\frac{40}{-4} =-10 $
| h+h/2=3 | | -2(x^2-5x+6.25)287.5=0 | | 3+y/2=4 | | -8x-12=7x+56 | | A=b1+b2/2 | | 6×+4y=+6 | | 3h/2=3 | | 2(x+12)^3-1=41 | | 34.82=7g+3.81 | | -5n-4=36 | | 5n÷3+1=7n÷15+3 | | 5x+10-14x=22 | | 11x=47=8 | | 41.88=8g+3.88 | | 24.37=5g+3.57 | | 5(2x-1)-4(3x+1)=2 | | 3p/4+14=3p-4 | | -4(5x-3)+4x=60 | | Y=84-7x | | 43=x+28 | | 19d−10d=18 | | 0.8w-0.2=5+w | | 44+b=-34 | | -6x=24(-1x) | | c−2=13 | | j−3=12 | | (28+z)/8=6 | | 4c+12=7c+11.94 | | d−10=5 | | 27x=2.75 | | v−1=3 | | 6x+11=-9x+19 |